Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Вопрос: 11. Массивы дисков с избыточностью (RAID массивы). Повышение производительности дисковой системы.





RAID 0.Представляет собой дисковый массив, в котором данные разбиваются на блоки, и каждый блок записываются (или же считывается) на отдельный диск. Таким образом, можно осуществлять несколько операций ввода-вывода одновременно. Преимущества: * наивысшая производительность для приложений требующих интенсивной обработки запросов ввода/вывода и данных большого объема; простота реализации; низкая стоимость на единицу объема. Недостатки: * не отказоустойчивое решение; отказ одного диска влечет за собой потерю всех данных массива. RAID 1. Зеркалирование - традиционный способ для повышения надежности дискового массива небольшого объема. В простейшем варианте используется два диска, на которые записывается одинаковая информация, и в случае отказа одного из них остается его дубль, который продолжает работать в прежнем режиме. Преимущества: простота реализации; простота восстановления массива в случае отказа (копирование); достаточно высокое быстродействие для приложений с большой интенсивностью запросов. Недостатки: высокая стоимость на единицу объема - 100% избыточность; * невысокая скорость передачи данных. RAID 5. Этот уровень похож на RAID 4, но в отличие от предыдущего четность распределяется циклически по всем дискам массива. Это изменение позволяет увеличить производительность записи небольших объемов данных в многозадачных системах. Если операции записи спланировать должным образом, то, возможно, параллельно обрабатывать до N/2 блоков, где N - число дисков в группе.Преимущества: * высокая скорость записи данных; * достаточно высокая скорость чтения данных; * высокая производительность при большой интенсивности запросов чтения/записи данных; * малые накладные расходы для реализации избыточности. Недостатки: * скорость чтения данных ниже, чем в RAID 4; * низкая скорость чтения/записи данных малого объема при единичных запросах; * достаточно сложная реализация; * сложное восстановление данных. RAID 10: Эта архитектура являет собой массив типа RAID 0, сегментами которого являются массивы RAID 1. Он объединяет в себе очень высокую отказоустойчивость и производительность. Преимущества: высокая отказоустойчивость; высокая производительность. Недостатки: очень высокая стоимость; ограниченное масштабирование. Для увеличения производительности дисковой системы рекомендуется выбрать RAID 0 либо RAID 10.

 

Вопрос: 12. Архитектура ЭВМ с шинной организацией. Типы шин в современных ЭВМ.

Структура ЭВМ на основе общей шины

При организации ЭВМ на основе общей шины (ОШ) взаимодействие между ее устройствами осуществляется через общую шину, к которой подключены все устройства, входящие в состав ЭВМ.

Взаимодействие между всеми устройствами ЭВМ осуществляется в режиме разделения времени общей шины (т.е. поочередно). Общая шина не обеспечивает высокой пропускной способности, что ограничивает число подключаемых устройств и общую производительность ЭВМ. Однако простота реализации обеспечили широкое использование такой структуры в ранних мини-ЭВМ и персональных компьютерах, а также в контроллерах - небольших специализированных микропроцессорных системах, предназначенных для управления производственными и бытовыми устройствами и приборами.

Структура ЭВМ на основе множества шин

По такому принципу построены современные компьютеры. На рисунке 1.4.3.1 показана 2-х шинная структура ЭВМ, в которой выделена одна шина для памяти, а вторая шина используется для подключения устройств ввода- вывода.

Поскольку общая шина работает на частоте самого медленного устройства, подключённого к ней, а память и периферийные устройства значительно отличаются скоростными характеристиками (быстродействие памяти намного выше быстродействия УВВ и ВЗУ), поэтому разделение шин является логичным. При 2-х шинной организации низкоскоростные устройства не ограничивают скорость обмена высокоскоростных устройств, при этом шина памяти должна обладать более высокой пропускной способностью, чем шина ввода- вывода.

В некоторых компьютерах число шин достигает трех и даже более, причем они образуют иерархию. Одна шина выделяется для низкоскоростных устройств типа принтеров, модемов, другая шина, более скоростная, для высокоскоростных периферийных устройств типа магнитных и оптических дисков, графических адаптеров, и третья шина, наиболее быстродействующая, используется для взаимодействия процессора с памятью. На вершине иерархии находится шина памяти, к которой через блок сопряжения (мост) подключают высокоскоростную периферийную шину, к которой, в свою очередь, через другой мост подключают шину ввода-вывода. Подобную архитектуру ЭВМ называют мезанинной (т.е. с надстройкой). Она характерна для большинства современных ЭВМ, в том числе и компьютеров на основе процессоров Pentium.

Типы шин в современных ЭВМ.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой шиной. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) выполняют роль моста между шинами.

- Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 МГц и имеет ширину 64 разряда (8 байт).

- Шина AGP. Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x) и предназначена для подключения видеоадаптера. Она подключается к северному мосту или Memory Controller Hub (MCH) набора микросхем системной логики.

- Шина PCI-Express. Это уже третье поколение шины PCI. Шина PCI-Expres - это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 Гбит/с в обоих направлениях (эффективное значение составляет 2 Гбит/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Некоторые системы поддерживают разъем PCI-Express x4, который обеспечивает скорость передачи данных 10 Гбит/с в каждом направлении. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 40 Гбит/с в каждом направлении.

- Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.

- Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; используется начиная с систем на базе процессоров 486. В настоящее время есть реализация этой шины с частотой 66 МГц. Находится под управлением контроллера PCI - части северного моста или компонента MCH набора микросхем. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. К шине PCI подключается южный мост набора микросхем, который содержит реализации интерфейса IDE и USB.

- Шина ISA. Это 16-разрядная шина, работающая на частоте 8 МГц; впервые стала использоваться в системах AT в 1984 году (была 8-разрядной и работала на частоте 5 МГц). Имела широкое распространение, но из спецификации PC99 исключена. Реализуется с помощью южного моста. Чаще всего к этой шине подключается микросхема Super I/O.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя место на платах для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют специализированное назначение.

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) -разрядная шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 6,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Это позволяет полностью отказаться от использования шины ISA в системных платах.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.