Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Слайд 9. Классификация производственных источников зажигания





(инициаторов горения)

 

Внутренние (скрытые) источники тепловой энергии – окислительные экзотермические реакции, приводящие к самовозгоранию (самовоспламенению). Воспламенение (загорание) произойдет, если время теплового воздействия внешнего или внутреннего источника теплоты на горючую смесь будет не менее периода, необходимого для развития реакции с формированием фронта пламени, способного к дальнейшему самопроизвольному распространению.

Пути и скорость распространения пламени и развития пожара определяются видом технологического процесса, агрегатным состоянием горючих материалов, размерами производства, техническим состоянием оборудования, уровнем и надежностью противопожарной защиты т.д. и т.п. Это 3-ий фактор ПО, который в каждом отдельном случае требует специального анализа и конкретизации.

2.4. В течение 12-13 мин. преподаватель дает пояснения об образовании горючей среды и технических решения по предупреждению возникновения этой опасности в различных аппаратах, в производственных помещениях и на открытых технологических площадках, где обращаются горючие жидкости, газы или твердыми материалы (пыль, порошки, волокна).

Различные технологические аппараты с пожаровзрывоопасными веществами при определенных условиях могут явиться местом возникновения пожара или взрыва. Для выявления возможности возникновения горения внутри технологического обору­дования необходимо, прежде всего, оценить возможность образования в нем горючей среды.

Для оценки возможности образования горючей среды внутри технологического оборудования необходимо знать основные режимные параметры (рабочую температуру, давление, концентрацию и др.). Эти данные содержатся в технологической документации и являются определяющими при оценке возможности образования горючей среды. К технологической документации относятся технологическая часть проекта (на стадии проектирования производства) и техноло­гический регламент (на стадии эксплуатации производства).

Условия образования горючей среды в аппаратах с веществами различного агрегатного состояния (га­з, жидкость, твердое – пыль, порошок, волокно) несколько отлича­ются и в каждом отдельном случае имеют свои особенности, которые вы рассмотрите на практических занятиях и семинаре.

В закрытых аппаратах с жидкостями горючая среда может образоваться только в том случае, когда над поверхностью (зеркалом) жидкости имеется свободный объем. Сам факт и скорость образования ГС будет зависеть от наличия в этом пространстве окислителя (например, кислород воздуха), от вида (ЛВЖ или ГЖ) и физико-химических свойств жидкости, условий проведения технологического процесса.

Наличие над зеркалом жидкости свободного пространства явля­ется необходимым, но не достаточным условием для образования го­рючей среды. Достаточным условием является уровень концентрации паров, находящийся в концентрационных пределах РП, т.е.

(2.1)

Для аппаратов с неподвижным уровнем жидкости (например, для аппаратов непрерывного действия) оценка возможности образования горючей среды может быть сделана по температуре. При этом, необходимо чтобы рабочая температура жидкости t р была соизмерима со значениями темпера­турных пределов распространения пламени и выполнялось условие:

. (2.2)

Итак, возможность образования горючей среды в закрытых аппаратах с ГЖ и ЛВЖ может быть оценена путем:

- проверки наличия над зеркалом жидкости свободного паровоздушного объема;

- сравнения рабочей концентрации паров жидкости с концент­рационными пределами воспламенения;

- сравнения рабочей температуры жидкости в аппарате со значениями температурных пределов воспламенения.

Основными направлениями защиты от образования горючей среды в аппаратах с горючими и легковоспламеняющимися жидкостями являются:

1. Ликвидация свободного паровоздушного объема одним из следующих способов:

· полное заполнение аппаратов жидкостью;

· хранение горючих и легковоспламеняющихся жидкостей под защитным слоем специальных ПАВ или устройств (плавающая крыша, понтон и др.);

· применение резинотканевых резервуаров.

2. Обеспечение безопасного температурного режима работы ап­паратов, то есть поддержание рабочей температуры tр ниже нижнего или выше верхне­го температурных пределов воспламенения (с учетом коэффициентов безопасности):

(tн - 10) ³ tр ³ (tв + 15). (2.3)

3. Использование негорючих (инертных) газов для заполнения свободного пространства аппаратов и передавливания горю­чих жидкостей.

4. Применение систем соединяющих между собой паровоздушные пространства различных емкостных аппаратов, позволяющих снизить концентрацию кислорода в паровоздушной смеси менее 16 % об., когда горение паров становится невоз­можным.

Аппараты с газами. Такие аппараты всегда находятся под избыточным давлением, поэтому поступление воздуха в них не­возможно, а, следовательно, невозможно и образование горючей среды.

Для предупреждения образования горючей среды внутри аппаратов с ГГ необходимо предусматривать следующие мероприятия и техни­ческие решения:

· поддерживать рабочую концентрацию горючего газа в смеси с окислителем за пределами области воспламенения, то есть ниже ниж­него и выше верхнего пределов распространения пламени;

· применять системы автоматической подачи негорючих (инертных) газов в объем аппаратов для разбавления (флегматизации) горючей сме­си.

· обеспечивать непрерывный автоматический контроль и сигнализацию об опасности со­держания в ГГ окислителя или же горючего га­за в окислителе.

· предусматривать системы автоматической блокировки, обес­печивающие прекращение подачи одного из компонентов горючей сме­си, а в некоторых случаях сразу двух компонентов, при опасных отк­лонениях концентрации от рабочих параметров.

В технологическом оборудовании с твердыми горючими вещества­ми и материалами горючая среда может образоваться при тепловом воздействии на них, в результате их самонагревания, при механической обработке до пылевидного состояния или получения волокон, порошка и т.п.

Сами твердые горючие вещества и материалы не способны образовывать в смеси с воздухом горючую среду. Если же их нагреть до некоторых критических температур, то может начаться процесс разло­жения с выделением летучих. Так, в процессе пиролиза древесины при температурах 150 - 275оС происходит ее разложение менее с выделением окиси углерода, уксусной кис­лоты, метана, водорода и других газообразных веществ. Выделяющиеся продукты разложения в среде окислителя при определенных условиях могут образовывать горючую смесь. В таких случаях оценку возможности образования горючей среды в технологическом оборудовании производят, как и в случае с ЛВЖ, ГЖ или ГГ, по условию (2.1).

Основными мерами защиты от образования горючей среды в аппаратах с твердыми горючими вещества­ми и материалами, которые подвергаются тепловому воздействию или склонны к самонагреванию, являются:

· применение систем автоматического контроля за температурой материала и температурой в аппарате;

· применение систем автоматического регулирования темпера­туры в аппаратах;

· применение систем автоматического контроля концентра­ции горючих продуктов термического разложения в аппарате.

· применение систем автоматической подачи негорючих (инерт­ных) газов в объем аппаратов для разбавления го­рючей смеси.

Технологические аппараты с горючими пылями (порошками, волокнами) характеризуются значительной пожарной опасностью. При работе мельниц, дробилок, хлопковых разрыхлителей, центробежных классификаторов, систем пневмотранспорта образуется очень большое количество пыли. Пыль в таких аппаратах может находиться во взвешенном состоя­нии (аэрозоль) и в осевшем состоянии (аэрогель). В первом случае пожарная опасность пылей рассматривается как для газов и паров, во втором случае ― как для твердых веществ и материалов.

Повышенную опасность для технологического оборудования представляет осевшая пыль. Обладая развитой поверхностью контакта с окислителем, она в отложившемся состоянии может самовозгорать­ся, а при взвихрении образовывать горючую концентрацию. Это обс­тоятельство обуславливает характерную особенность циклического протекания пылевых взрывов. Сначала, как правило, происходит пер­вичный взрыв (вспышка) небольшой мощности в локальной зоне техно­логического оборудования. Образующаяся при этом взрывная волна приводит к взвихрению оставшейся пыли и образованию горючей пыле­воздушной смеси в значительно большем объеме. Происходит повтор­ный взрыв, который часто приводит к разрушению оборудования и об­разованию горючей концентрации уже в объеме производственного це­ха. Мощность последнего взрыва может оказаться достаточной для разру­шения всего здания, в котором размещается производство. Такое развитие событий характерно для аварийных ситуаций на зернофабриках, мукомольных заводах и элеваторах,

Для предупреждения образования горючей среды внутри техноло­гического оборудования с горючими пылями (порошками, волокнами) необходимо предусматривать следующие мероприятия и технические решения:

1. Применять, по возможности, менее пылящие технологические процессы (мокрые способы обработки, измельчение с увлажнением, вибрационный помол).

2. Использовать инертные газы или минеральные (неорганичес­кие) пыли для разбавления (флегматизации) пылевоздушного пространства аппара­тов.

3. Применять инертные газы для пневматической транспор­тировки

взрывоопасных пылей.

4. Оборудовать системы аспирации (местные отсосы) у пылящего технологического оборудования.

· Исключать возможность оседания горючей пыли на внутренних поверхностях аппаратов и трубопроводов.

5. Оборудовать аппараты и трубопроводы специальными лючками, обеспечивающими доступ для очистки внутренних поверхностей от отложений пыли.

В производственных помещениях и на открытых технологических площадках горючие паро-, газо- и пылевоздушные смеси образуются в двух случаях:

1. При выходе горючих веществ из нормально действующих технологических аппаратов, что, как правило, допускается технологическим регламентом.

2. При выходе горючих веществ из поврежденного по каким-либо причинам технологического оборудования (аварийная ситуация).

При нормальных режимах работы оборудования горючая среда на технологических участках может образовываться в том случае, если по условиям технологии применяются:

Аппараты с открытой поверхностью испарения (окрасочные ванны, ванны для пропитки изделий, ванны для промывки и обезжиривания деталей, закалочные ванны и т. п.). Горючая концентрация па­ров жидкости в смеси с воздухом над поверхностью таких аппаратов будет образовываться когда рабочая температура жидкости t р выше ее температуры вспышки:

(2.5)

Для предупреждения образования горючей среды при использова­нии аппаратов с открытой поверхностью испарения необходимо пре­дусматривать следующие мероприятия и технические решения:

· использовать по возможности закрытые (герметичные) аппараты;

· заменять ЛВЖ и ГЖ на пожаробезопасные жидкости и составы;

· поддерживать рабочую температуру горючей жидкости ниже температуры вспышки (с учетом коэффициента безопасности):

tр < (tвсп – 10) (2.6)

· производить выбор наиболее рациональной формы открытого аппарата, позволяющей иметь минимальную величину поверхности ис­парения;

· использовать системы местных отсосов или улавливания выделяющихся при испарении паров жидкости непосредственно у аппа­ратов.

Аппараты с дыхательными устройствами. Данные аппараты представляют собой закрытые емкости, внутренний объем которых сообщается с ок­ружающей средой через дыхательные устройства (дыхательные трубы, клапана и т.п.). К таким аппаратам относятся резервуары, мерники, дозаторы и другие емкости, работа которых по условиям технологии требует изменения уровня жидкости (демонстрация слайда 10).

Лектор поясняет рисунок. Слайд остается на экране до демонстрации следующего по тексту слайда:

 

Слайд 10. Схема большого дыхания резервуара:

а – до начала заполнения; б – в период заполнения; 1- наполнительная линия; 2 – корпус; 3 – дыхательный клапан; 4 – уровень жидкости; 5 – расходная линия.

 

На практике различают малое и большое дыхание аппаратов. Под большим дыханием понимается вытеснение паров наружу или подсос воздуха внутрь аппарата при изменении в нем уровня жидкости (при наполнении и опорожнении). Под малым дыханием понимается вытеснение паров наружу или подсос воздуха внутрь аппарата при изменении температуры в его газовом пространстве. При этом уровень жидкости остается неизменным. Образование горючей среды у дыхательных уст­ройств возможно, если рабочая температура жидкости в аппарате больше или равна НТПР:

(3.7)

В этих случаях для предупреждения образования горючей среды снаружи аппаратов необходимо:

· герметизация внутреннего объема аппаратов путем установки специальных дыхательных клапанов;

· применение газоуравнительных систем, соединяющих между собой паровоздушные объемы различных емкостных аппаратов, за счет чего исключается выход паров в окружающее пространство;

· устройство систем улавливания и утилизации вытесняемых через дыхательные устройства паров (ад­сорбционные, абсорбционные, холодильные и другие установки);

· применение плавающих крыш и понтонов;

· снижение количества выбросов от малых дыханий, возникающих вследс­твие нагрева аппаратов от солнечной радиации (окраска аппаратов в светлые тона, орошение, устройство теплоизоляции);

· вывод дыхательных труб за пределы помещения.

Аппараты, периодически открываемые для выгрузки и загруз­ки веществ. Оценка возможности образования горючей среды в объеме помещений или локальных зонах в таких случаев может быть произведена путем сравнения фактической концентрации горючих веществ j ф со значением нижнего концентраци­онного предела распространения пламени j н. Горючая среда будет образовываться, если выполняется условие:

(2.8)

Для предотвращения образования горючей среды вследствие эксплуатации аппаратов периодического действия на практике необходимо предусматривать следующие меры:

· заменять по возможности аппараты периодического действия на герметичные аппараты непрерывного действия;

· максимально герметизировать загрузочные и разгрузочные устройства аппаратов;

· предусматривать системы местных отсосов горючих газов, паров и пылей у мест их сосредоточенного выхода из аппаратов (открываемые крышки, люки для взятия проб и т.п.).

Герметичные аппараты, работающие под избыточным давлени­ем. При эксплуатации таких аппаратов даже при их исправном состо­янии могут происходить небольшие утечки горючих веществ через прокладки, швы, разъемные соединения, уплотнения валов, плунжеров и т.п. Причины нарушения герметичности запланировано разобрать на практических занятиях для конкретных аппаратов и процессов.

Для уменьшения количества утечек при эксплуатации герметичных аппаратов необходимо:

· применять сварку, пайку и развальцовку для не­разъемных соединений;

· использовать легкодеформируемые и износоустойчивые прок­ладочные материалы (фибру, резину, асбест, паронит и т.п.) для разъемных соеди­нений;

· применять по возможности вместо сальниковых уплотнений торцевые уплотнения;

· оборудовать местные отсосы у мест установки сальни­ковых уплотнений;

· проводить проверку технологического оборудования на герметичность перед пуском, после ремонта, обслуживания, длительного простоя, а также через определенные периоды эксплуатации, оговоренные технологической инструкцией.

Наибольшую пожарную опасность технологическое оборудование представляет в случае аварийных ситуаций, когда нарушается его нормальный режим работы и происходит повреждение аппаратов и коммуникаций. Вероятность возникновения аварийных и чрезвычайных ситуаций связанных с пожарами или приводящих к ним на промышленных объектах будет сведена в будущем к минимуму, если Вы отнесетесь с пониманием и ответственностью к изучению дисциплины ПБТП в совокупности с другими предметами курса подготовки инженеров пожарной безопасности.

ВЫВОДЫ

 

Таким образом, пожарная безопасность технологических процессов определяется свойствами горючей среды (фактор-1), особенностями источников воспламенения (фактор-2) и путями распространения пожара (фактор-3). Для инженерных решений по обеспечению ПБ производства необходимо:

- знать и понимать сущность процессов, происходящих в тех или иных аппаратах, принцип их работы;

- уметь предвидеть причины, которые могут привести к разрушению оборудования;

- знать способы и приемы, позволяющие устранить нежелательные явления.

Задача курса «Пожарная безопасность технологических процессов» - научить видеть и предвидеть возможные пожаровзрывоопасные ситуации. Однако просто видеть и понимать суть происходящих явлений недостаточно, необходимо уметь управлять ими, принимать правильные решения. Только в этом случае может состояться специалист в области пожарной безопасности.

Подробно этот предмет Вы будете изучать на 4-5 курсах, но базой для его успешного освоения помимо данной лекции и вводных практических занятий являются фундаментальные дисциплины: химия, физика, математика; специальные дисциплины: теоретические основы процессов горения, термодинамика и теплопередача, гидравлика, пожарная тактика и др. Добросовестное их изучение – залог успешного освоения курса ПБТП.







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.