Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







П 1.2. Волновые процессы. Акустика





Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию – процесс распространения колебаний в пространстве.

Фронт волны (волновой фронт) – геометрическое место точек, до которых доходят волны за некоторый промежуток времени t.

Волновая поверхность – геометрическое место точек, колеблющихся в одинаковой фазе.

Основное свойство волн, независимо от их природы, – перенос энергии без переноса вещества в пространстве.

Длина волны l – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе (расстояние, на которое распространяется волна за один период):

; ,

где l – длина волны;

T – период;

n – частота;

v – скорость распространения волны.

Волновой вектор k определяет направление волны. Направление волнового вектора совпадает с направлением вектора скорости:

,

где w – круговая частота.

Волновое число – численное значение волнового вектора:

.

Групповая скорость – скорость перемещения в пространстве амплитуды волны:

.

Упругие (или механические) волны – механические возмущения, возникающие и распространяющиеся в упругой среде. Различают продольные и поперечные волны.

Продольные волны – волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.

В жидкостях и газах возникают и распространяются только продольные волны («волны сжатия»).

В твердых телах возникают и распространяются не только продольные, но и поперечные волны («волны сдвига»).

Фазовая скорость упругих волн:

продольных, поперечных,

где E – модуль Юнга;

G – модуль сдвига.

Одиночная волна (импульс) – сравнительно короткое возмущение, не имеющее регулярного характера.

Волновой пакет – совокупность волн, частоты которых мало отличаются друг от друга.

Гармоническая волна – бесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса.

Плоские волны – такие, волновые поверхности которых представляют собой систему параллельных друг другу плоскостей, перпендикулярных направлению распространения волны.

Сферические волны – такие, волновые поверхности которых представляют собой систему концентрических сферических поверхностей.

Принцип суперпозиции волн – результат геометрического сложения когерентных волн.

Когерентные волны – обладающие в каждой из точек среды постоянной разностью фаз и имеющие одинаковую частоту.

Когерентные источники – точечные источники, размерами которых можно пренебречь, излучающие в пространство когерентные волны.

Интерференция волн – явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве.

Стоячая волна – волна, возникающая при интерференции двух встречных (падающей и отраженной) плоских волн с одинаковой амплитудой.

Уравнение стоячей волны:

,

где – амплитуда стоячей волны.

Условие максимального значения амплитуды стоячей волны:

,

где n=0, 1, 2, 3¼;

Условие минимального значения амплитуды стоячей волны:

,

где n=0, 1, 2, 3¼;

Пучности стоячей волны – точки, в которых амплитуда удваивается.

Узлы стоячей волны – точки, в которых амплитуда обращается в нуль.

Длина стоячей волны – расстояние между соседними узлам l0:

.

Скорость распространения стоячей волны:

,

где L – некоторое расстояние, на котором наблюдается стоячая волна;

n – число узлов;

n – частота колебаний.

Бегущие волны – волны, которые переносят в пространстве энергию.

Уравнение плоской прямой бегущей волны, распространяющейся со скоростью v в направлении x – выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени:

,

где x – смещение от положения равновесия точки, находящейся на расстоянии x от источника гармонических колебаний;

x0 – амплитуда колебаний;

w – циклическая частота колебаний;

j0 – начальная фаза колебаний.

Уравнение плоской обратной бегущей волны:

.

Связь между разностью фаз двух точек бегущей волны и разностью хода ( x2 – x1 ), т.е. разностью расстояний этих точек от источника колебаний:

.

Волновое уравнение плоской волны, распространяющейся вдоль оси X, дифференциальное уравнение второго порядка в частных производных:

.

Волновое уравнение плоской волны, распространяющейся в трехмерном пространстве:

,

где – оператор (лапласиан).

Скорость звука в газах

,

где p – давление газа, не возмущенного волной;

r – плотность газа, не возмущенного волной;

– отношение молярной теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Амплитуда звукового давления Dp0 и амплитуда скорости v 0 частиц в звуковой волне связаны соотношением

.

Интенсивность звука I, выраженная через амплитуду звукового давления – энергия, переносимая звуковой волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны:

,

где r – плотность газа.

Уровень интенсивности звука (в децибелах) – определяется формулой

,

где I – интенсивность данного звука;

I0=10 – 12 Вт/м2 – интенсивность звука на пороге слышимости при стандартной частоте n=1 кГц.

Уровень громкости звука (в фонах) – вычисляется по формуле

,

где IN – интенсивность звука стандартной частоты n=1 кГц, равногромкого с исследуемым звуком.

Явление Доплера – если источник и приемник звука перемещаются относительно среды, в которой распространяется звук, то частота звуковых колебаний n', регистрируемая приемником звука, связана с частотой собственных колебаний n источника соотношением

,

где c, u, v – скорости соответственно звука, его источника и приемника.

Примечание. Записанная формула относится к случаю, если источник и приемник звука движутся по одной прямой. При этом величины u, v – алгебраические: u>0, если источник движется к приемнику; u<0, если источник удаляется от приемника. Аналогично, v>0, если приемник приближается к источнику; v<0, если приемник движется от источника.

Вектор плотности потока энергии волны – физическая величина, модуль которой равен энергии DW, переносимой волной за единицу времени (Dt=1) через единичную площадку, расположенную перпендикулярно направлению распространения волны (DS^):

; =uv; J=u×v,

где u – плотность энергии в каждой точке среды, среднее значение которой вычисляется по формуле ;

ρ – плотность среды;

x0 – амплитуда волны;

w – круговая (циклическая частота);

v – фазовая скорость (скорость перемещения фазы волны).

 

П 1.3. Энергия, работа, мощность.

Законы сохранения в механике

Энергия – количественная мера и качественная характеристика движения и взаимодействия материи во всех ее превращениях. Она является функцией состояния системы и характеризует способности системы к совершению работы при переходе из одного состояния в другое.

Изменение энергии при переходе системы из одного состояния в другое равно работе, совершаемой системой в процессе перехода:

DW=W1–W2=A.

Диссипация (рассеяние) энергии механических систем -процесс перехода части их механической энергии в другие формы под влиянием внешних факторов (например, за счет наличия сил сопротивления).

Диссипативные системы системы, в которых полная механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы, например в теплоту.

Механическая энергия -физическая величина, равная работе, которая может быть произведена при полном превращении движения данной формы в механическую форму движения материи.

Кинетическая энергия -физическая величина, характеризующая способность движущегося тела или системы совершать работу при торможении до полной остановки – одна из функций состояния ее движения:

.

Кинетическая энергия системы - сумма кинетических энергий отдельных тел (материальных точек) этой системы:

,

где - масса тела (системы);

- кинетическая энергия i-го тела системы.

Связь между кинетической энергией тела (системы) и его импульсом:

.

Кинетическая энергия при вращательном движении:

1) элементарной массы Dmi:

,

где Ii=Dmi∙ri2-момент инерции материальной точки, относительно выбранной оси вращения;

2) тела (системы):

,

где -момент инерции тела относительно той же оси вращения.

Потенциальная энергия -физическая величина, характеризующая способность системы совершать работу, связанную с изменением конфигурации и взаимного расположения тел или частей в системе.

Изменение потенциальной энергии системы зависит только от начального и конечного ее состояний и равно работе внутренних (консервативных) сил системы, взятой с обратным знаком:

dWp=-dA.

Характеристики поля тяготения: напряженность и потенциал поля тяготения.

Напряженностью поля тяготения в данной точке называется векторная физическая величина, равная по величине и направлению силе, действующей на единичную массу, помещенную в данную точку поля:

.

Потенциалом поля тяготения называют скалярную физическую величину, равную потенциальной энергии единичной массы, помещенной в данную точку поля

,

т.е. потенциал поля тяготения тоже с увеличением расстояния увеличивается и при r®¥ равен нулю.







Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.