|
Современная теория измерений и экспертные оценки.Для дальнейшего более углубленного рассмотрения проблем экспертных оценок понадобятся некоторые понятия так называемой репрезентативной теории измерений, служащей основой теории экспертных оценок, прежде всего той ее части, которая связана с анализом заключений экспертов, выраженных в качественном (а не в количественном) виде. Мнения экспертов часто выражены в порядковой шкале (подробнее о шкалах говорится ниже), т.е. эксперт может сказать (и обосновать), что один показатель качества продукции более важен, чем другой, первый технологический объект более опасен, чем второй, и т.д. Но он не в состоянии сказать, во сколько раз или на сколько более важен, соответственно, более опасен. Экспертов часто просят дать ранжировку (упорядочение) объектов экспертизы, т.е. расположить их в порядке возрастания (или убывания) интенсивности интересующей организаторов экспертизы характеристики. Ранг - это номер (объекта экспертизы) в упорядоченном ряду. Формально ранги выражаются числами 1, 2, 3,..., но с этими числами нельзя делать привычные арифметические операции. Например, хотя 1 + 2 = 3, но нельзя утверждать, что для объекта, стоящем на третьем месте в упорядочении, интенсивность изучаемой характеристики равна сумме интенсивностей объектов с рангами 1 и 2. Так, один из видов экспертного оценивания - оценки учащихся. Вряд ли кто-либо будет утверждать, что знания отличника равны сумме знаний двоечника и троечника (хотя 5 = 2 + 3), хорошист соответствует двум двоечникам (2 + 2 = 4), а между отличником и троечником такая же разница, как между хорошистом и двоечником (5 - 3 = 4 - 2). Поэтому очевидно, что для анализа подобного рода качественных данных необходима не всем известная арифметика, а другая теория, дающая базу для разработки, изучения и применения конкретных методов расчета. Это и есть РТИ. Надо иметь в виду, что в настоящее время термин "теория измерений" применяется для обозначения целого ряда научных дисциплин: классической метрологии, РТИ, некоторых других направлений, например, алгоритмической теории измерений. Сначала РТИ развивалась как теория психофизических измерений. Основоположник РТИ американский психолог С.С. Стивенс основное внимание уделял шкалам измерения. Характерен следующий этап развития РТИ. Один из томов выпущенной в США в 1950-х годах "Энциклопедии психологических наук" назывался "Психологические измерения". Значит, составители этого тома расширили сферу применения РТИ с психофизики на психологию в целом. А в основной статье в этом сборнике под названием, обратите внимание, "Основы теории измерений", изложение шло на абстрактно-математическом уровне, без привязки к какой-либо конкретной области применения. В этой статье упор был сделан на "гомоморфизмах эмпирических систем с отношениями в числовые" (в эти математические термины здесь вдаваться нет необходимости), и математическая сложность возросла по сравнению с работами С.С. Стивенса. Уже в одной из первых отечественных статей по РТИ (конец 1960-х годов) было установлено, что баллы, присваиваемые экспертами при оценке объектов экспертизы, как правило, измерены в порядковой шкале. Отечественные работы, появившиеся в начале 1970-х годов, привели к существенному расширению области использования РТИ. Ее применяли к педагогической квалиметрии (измерению качества знаний учащихся), в системных исследованиях, в различных задачах теории экспертных оценок, для агрегирования показателей качества продукции, в социологических исследованиях, и др. В качестве двух основных проблем РТИ наряду с установлением типа шкалы был выдвинут поиск алгоритмов анализа данных, результат работы которых не меняется при любом допустимом преобразовании шкалы (т.е. является инвариантным относительно этого преобразования). Основные шкалы измерения. В соответствии с РТИ при математическом моделировании реального явления или процесса следует прежде всего установить, в каких типах шкал измерены те или иные переменные. Тип шкалы задает группу допустимых преобразований. Допустимые преобразования не меняют соотношений между объектами измерения. Например, при измерении длины переход от аршин к метрам не меняет соотношений между длинами рассматриваемых объектов - если первый объект длиннее второго, то это будет установлено и при измерении в аршинах, и при измерении в метрах. Укажем основные виды шкал измерения и соответствующие группы допустимых преобразований. В шкале наименований (другое название - н оминальной шкалы) допустимыми являются все взаимно-однозначные преобразования. В этой шкале числа используются лишь как метки. Примерно так же, как при сдаче белья в прачечную, т.е. лишь для различения объектов. В шкале наименований измерены, например, номера телефонов, автомашин, паспортов, студенческих билетов. Пол людей тоже измерен в шкале наименований, результат измерения принимает два значения - мужской, женский. Раса, национальность, цвет глаз, волос - номинальные признаки. Номера букв в алфавите - тоже измерения в шкале наименований. Никому в здравом уме не придет в голову складывать или умножать номера телефонов, такие операции не имеют смысла. Сравнивать буквы и говорить, например, что буква П лучше буквы С, также никто не будет. Единственное, для чего годятся измерения в шкале наименований - это различать объекты. Во многих случаях только это от них и требуется. Например, шкафчики в раздевалках для взрослых различают по номерам, т.е. числам, а в детских садах используют рисунки, поскольку дети еще не знают чисел. В порядковой шкале числа используются для установления порядка между объектами. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично. Этим подчеркивается "нечисловой" характер оценок знаний учащихся. В порядковой шкале допустимыми являются все строго возрастающие преобразования. Установление типа шкалы, т.е. задания группы допустимых преобразований шкалы измерения - дело специалистов соответствующей прикладной области. Так, оценки привлекательности профессий мы, выступая в качестве социологов, считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с нами, полагая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен достаточно трудоемкий эксперимент. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок. Оценки экспертов, как уже отмечалось, часто следует считать измеренными в порядковой шкале. Типичным примером являются задачи ранжирования и классификации промышленных объектов, подлежащих экологическому страхованию (см. ниже). Почему мнения экспертов естественно выражать именно в порядковой шкале? Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах. Используется много других известных примеров порядковых шкал. Так, например, в минералогии используется шкала Мооса, по которому минералы классифицируются согласно критерию твердости. А именно: тальк имеет балл 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. Порядковыми шкалами в географии являются - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.), шкала силы землетрясений. В медицине порядковыми шкалами являются - шкала стадий гипертонической болезни (по Мясникову), шкала степеней сердечной недостаточности (по Стражеско-Василенко-Лангу), шкала степени выраженности коронарной недостаточности (по Фогельсону). Номера домов также измерены в порядковой шкале. При оценке качества продукции и услуг, в т.н. квалиметрии (буквальный перевод: измерение качества) популярны порядковые шкалы. А именно, единица продукции оценивается как годная или не годная. При более тщательном анализе используется шкала с тремя градациями: есть значительные дефекты - присутствуют только незначительные дефекты - нет дефектов. При оценке экологических воздействий первая оценка - обычно порядковая: природная среда стабильна - природная среда угнетена (деградирует). Аналогично в эколого-медицинской шкале: нет выраженного воздействия на здоровье людей - отмечается отрицательное воздействие на здоровье. Порядковая шкала используется и в иных областях. Порядковая шкала и шкала наименований - основные шкалы качественных признаков. Поэтому во многих конкретных областях результаты качественного анализа можно рассматривать как измерения по этим шкалам. Шкалы количественных признаков - это шкалы интервалов, отношений, разностей, абсолютная. По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой. В этих случаях на шкале нельзя отметить ни естественное начало отсчета, ни естественную единицу измерения. Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования, т.е. линейные функции. Температурные шкалы Цельсия и Фаренгейта связаны именно такой зависимостью: С0 = 5/9 (Ф0 - 32), где С0 - температура по шкале Цельсия, а Ф0 - температура по шкале Фаренгейта. Из количественных шкал наиболее распространенными в науке и практике являются шкалы отношений. В них есть естественное начало отсчета - нуль, т.е. отсутствие величины, но нет естественной единицы измерения. По шкале отношений измерены большинство физических единиц: масса тела, длина, заряд, а также цены в экономике. Допустимыми преобразованиями шкале отношений являются подобные (изменяющие только масштаб). Другими словами, линейные возрастающие преобразования без свободного члена. Время измеряется по шкале разностей, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. Естественного начала отсчета указать на современном уровне знаний нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии Господь Иисус Христос родился в 1054 г. н.э. (по принятому ныне летоисчислению) в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим). Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование. В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру следует считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием). Инвариантные алгоритмы и средние величины. Основное требование к алгоритмам анализа данных формулируется в РТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных. Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы. Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) - в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т.е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т.е. когда они инвариантны относительно допустимого преобразования шкалы. В качестве примера рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Пусть Y1, Y2,...,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2,...,Zn - второму (другому варианту такого развития). Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям. А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Обобщением нескольких из перечисленных является среднее по Колмогорову. Для чисел X1, X2,...,Xn среднее по Колмогорову вычисляется по формуле: G{(F(X1)+F(X2)+...F(Xn))/n}, (15.1) где F - строго монотонная функция, G - функция, обратная к F. Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F(x) = x, то среднее по Колмогорову - это среднее арифметическое, если F(x) = ln x, то среднее геометрическое, если F(x) = 1/x, то среднее гармоническое, если F(x) = x2, то среднее квадратическое, и т.д. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2,...Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2,...Xn, и не больше, чем максимальное из этих чисел. Среднее по Колмогорову - частный случай среднего по Коши. Медиана и мода, хотя и не являются средними по Колмогорову, но тоже - средние по Коши. При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в РТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы. Пусть f(X1, X2,...,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности: f(Y1, Y2,...,Yn) < f(Z1, Z2,...,Zn). (15.2) Согласно РТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство f(g(Y1), g(Y2),..., g(Yn)) < f (g(Z1), g(Z2),..., g(Zn)), (15.3) т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2,...,Yn и Z1, Z2,...,Zn и, напомним, любого допустимого преобразования g. Согласно РТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале. С помощью математической теории, развитой А.И.Орловым в 1970-х годах, удается описать вид допустимых средних в основных шкалах. В шкале наименований в качестве среднего годится только мода. Из всех средних по Коши в порядковой шкале в качестве средних можно использовать только члены вариационного ряда (порядковые статистики), в частности, медиану (при нечетном объеме выборки. При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану), но не среднее арифметическое, среднее геометрическое и т.д. В шкале интервалов из всех средних по Колмогорову можно применять только среднее арифметическое. В шкале отношений из всех средних по Колмогорову устойчивыми относительно сравнения являются только степенные средние и среднее геометрическое. Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1+X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1 = 6, Z2 = 8. Тогда f(Y1, Y2) = 6, что меньше, чем f(Z1, Z2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Таких преобразований много. Например, можно положить g(x) = x при x, не превосходящих 8, и g(x) = 99(x-8)/3 + 8 для х, больших 8. Тогда f(g(Y1), g(Y2)) = 50, что больше, чем f(g(Z1), g(Z2)) = 7. Как видим, в результате допустимого, т.е. строго возрастающего преобразования шкалы упорядоченность средних изменилась. Приведенные результаты о средних величинах широко применяются, причем не только в теории экспертных оценок или социологии, но и, например, для анализа методов агрегирования датчиков в АСУ ТП доменных печей. Велико прикладное значение РТИ в задачах стандартизации и управления качеством, в частности, в квалиметрии. Здесь есть и интересные теоретические результаты. Так, например, любое изменение коэффициентов весомости единичных показателей качества продукции приводит к изменению упорядочения изделий по средневзвешенному показателю (эта теорема доказана проф. В.В. Подиновским). Методы средних баллов. В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и иные опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п., а затем рассчитывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных. Какими формулами пользоваться для вычисления средних величин? Ведь средних величин, как мы знаем, очень много разных видов. Обычно применяют среднее арифметическое. Уже более 30 лет известно, что такой способ некорректен, поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их привычности и распространенности. Поэтому целесообразно использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с концепцией устойчивости, рекомендующей использовать различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют реальной действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод обработки исходных экспертных оценок. Пример сравнения восьми проектов. Рассмотрим конкретный пример применения только что сформулированного подхода. По заданию руководства фирмы анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы. Они были обозначены следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, назначенным Правлением фирмы. В приведенной ниже табл.1 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с представлением экспертов о целесообразности включения проекта в стратегический план фирмы. При этом эксперт присваивает ранг 1 самому лучшему проекту, который обязательно надо реализовать. Ранг 2 получает от эксперта второй по привлекательности проект,..., наконец, ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь). Анализируя результаты работы экспертов (т.е. табл.1), члены Правления фирмы были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные, приведенные в табл. 15.1, следует подвергнуть более тщательному математическому анализу. Таблица 15.1 Ранги 8 проектов по степени привлекательности для включения в план стратегического развития фирмы
Примечание. Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5. Метод средних арифметических рангов. Сначала был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам (см. табл.1). Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка (в другой терминологии - упорядочение), исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл.2 ниже. Итак, ранжировка по суммам рангов (или, что то же самое, по средним арифметическим рангам) имеет вид: Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К. (15.4) Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку проекты Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (3) имеет одну связь. Таблица 15.2 Результаты расчетов по методу средних арифметических и методу медиан для данных, приведенных в табл.15.1
Метод медиан рангов. Значит, итог расчетов - ранжировка (3), и на ее основе предстоит принимать решение? Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил, что ответы экспертов измерены в порядковой шкале, а потому для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан. Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания (проще было бы сказать - "в порядке возрастания", но поскольку некоторые ответы совпадают, то приходится использовать непривычный термин "неубывание"). Получим последовательность: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5. Медианы совокупностей из 12 рангов, соответствующих определенным проектам, приведены в предпоследней строке табл.2. (При этом медианы вычислены по обычным правилам статистики - как среднее арифметическое центральных членов вариационного ряда.) Итоговое упорядочение по методу медиан приведено в последней строке таблицы. Ранжировка (т.е. упорядочение - итоговое мнение комиссии экспертов) по медианам имеет вид: Б < {М-К, Л} < Сол < Д < Стеф < К <Г-Б. (15.5) Поскольку проекты Л и М-К имеют одинаковые медианы баллов, то по рассматриваемому методу ранжирования они эквивалентны, а потому объединены в группу (кластер), т.е. с точки зрения математической статистики ранжировка (4) имеет одну связь. Сравнение ранжировок по методу средних арифметических и методу медиан. Сравнение ранжировок (15.4) и (15.5) показывает их близость (похожесть). Можно принять, что проекты М-К, Л, Сол упорядочены как М-К < Л < Сол, но из-за погрешностей экспертных оценок в одном методе признаны равноценными проекты Л и Сол (ранжировка (15.4)), а в другом - проекты М-К и Л (ранжировка (15.5)). Существенным является только расхождение, касающееся упорядочения проектов К и Г-Б: в ранжировке (15.4) Г-Б < К, а в ранжировке (15.5), наоборот, К < Г-Б. Однако эти проекты - наименее привлекательные из восьми рассматриваемых, и при выборе наиболее привлекательных проектов для дальнейшего обсуждения и использования это расхождение не существенно. Рассмотренный пример демонстрирует сходство и различие ранжировок, полученных по методу средних арифметических рангов и по методу медиан, а также пользу от их совместного применения. Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|