|
Силы и потенциальная энергия межмолекулярного взаимодействияПри выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объем молекул и взаимодействие между ними. Так, в 1м3 газа при нормальных условиях содержится 2,68 1025 молекул, занимающих объем примерно 10–4 м3, которым по сравнению с объемом газа (1 м3) можно пренебречь. При давлении 500 МПа объем молекул составит уже половину всего объема газа. Таким образом, при высоких давлениях и низких температурах указанная модель идеального газа непригодна. При рассмотрении реальных газов - газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях < 10–9 м и быстро убывают при увеличении расстояния между молекулами. Такие силы называются короткодействующими. Было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис.9.1. α приведена качественная зависимость сил межмолекулярного взаимодействия отрасстояния r между молекулами, где F 0и Fп – соответственно силы отталкивания и притяжения, a F – их результирующая. Силы отталкивания считаются положительными, а силы взаимного притяжения – отрицательными. На расстоянии r=r 0результирующая сила Рис.9.1. F= 0, т. е. силы притяжения и отталкивания уравновешивают друг друга. Таким образом, расстояние r 0соответствует равновесному расстоянию между молекулами. При r<r 0преобладают силы отталкивания (F >0), при r>r 0— силы притяжения (F< 0). На расстояниях r >10–9 м межмолекулярные силы взаимодействия практически отсутствуют (F→ 0). Элементарная работа δА силы F при увеличении расстояния между молекулами на dr совершается за счет уменьшения потенциальной энергии молекул, т.е. δА =Fdr= –dWp. (9.1) Из анализа зависимости потенциальной энергии взаимодействия молекул от расстояния между ними (рис.9.1. б)следует, что, если молекулы находятся на большом расстоянии (r→∞), то Wp = 0. При сближении молекул между ними появляются силы притяжения (F< 0), которые совершают положительную работу (δA=Fdr> 0). Тогда потенциальная энергия взаимодействия уменьшается, достигая минимума при r=r 0. При r<r 0 с уменьшением r силы отталкивания (F> 0)резко возрастают и совершаемая против них работа отрицательна (δA = Fdr< 0). Потенциальная энергия тоже резко возрастает и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (r=r 0) обладает минимальной потенциальной энергией. Критерием различных агрегатных состояний вещества является соотношение между величинами Wp min и kТ. Wp min – наименьшая потенциальная энергия взаимодействия молекул – определяет работу, которую нужно совершить против сил притяжения, чтобы разъединить молекулы, находящиеся в равновесии (r=r 0); kТ определяет удвоенную среднюю энергию, приходящуюся на одну степень свободы. Если Wp min << kТ, то вещество находится в газообразном состоянии, так как тепловое движение молекул препятствует соединению молекул, сблизившихся до расстояния r 0, т.е. вероятность образования агрегатов из молекул достаточно мала. Если Wp min >> kТ,то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстояния и колеблются около положений равновесия. Если Wp min ≈ kТ, то вещество находится в жидком состоянии, так как в результате теплового движения молекулы перемещаются в пространстве, обмениваясь местами, но не расходясь на расстояние, превышающее r 0. Значит, любое вещество в зависимости от температуры может находиться в газообразном, жидком или твердом агрегатном состоянии, причем температура перехода из одного агрегатного состояния в другое зависит от значения Wp min для данного вещества. Например, у инертных газов Wp min мало, а у металлов велико, поэтому при комнатных температурах они находятся соответственно в газообразном и твердом состояниях.
Уравнение Ван-дер-Ваальса Для реальных газов необходимо учитывать размеры молекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона – Менделеева pVm = RT (для моля газа), описывающее идеальный газ, для реальных газов непригодны. Учитывая собственный объем молекул и силы межмолекулярного взаимодействия, голландский физик Ван-дер-Ваальс вывел уравнение состояния реального газа. В уравнение Клапейрона-Менделеева он ввел две поправки. 1. Учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул, сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не Vm,a Vm - b, где b – объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул. Если, например, в сосуде находятся две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы. Это означает, что для центров обеих молекул оказывается недоступным сферический объем радиуса d,т. е. объем, равный восьми объемам молекулы или учетверенному объему молекулы в расчете на одну молекулу. 2. Учет притяжения молекул. Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е. p/= ,(9.1) где: а – постоянная Ван-дер-Ваальса, характеризующая силы межмолекулярного притяжения, Vm - молярный объем. Вводя эти поправки, получим уравнение Ван-дер-Ваальса для моля газа (уравнение состояния реальных газов): (p+ )(Vm-b)= RT. (9.2) Для произвольного количества вещества ν газа (ν = m / M) с учетом того, что V=vVm, уравнение Ван-дер-Ваальса примет вид
или (p+ v2a/V2)(V - νb) = vRT, где поправки а и b постоянные для каждого газа величины, определяемые опытным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b). При выводе уравнения Ван-дер-Ваальса сделан целый ряд упрощений, поэтому оно также приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.
Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|