|
Стереометрия. Многогранники. ⇐ ПредыдущаяСтр 9 из 9 1º. Призмой называется многогранник, поверхность которого состоит из двух равных многоугольников (оснований), расположенных в параллельных плоскостях, и параллелограммов (боковых граней), число которых равно числу сторон оснований. Если l – длина бокового ребра, P – периметр основания, Sосн – площадь основания, Sсеч – площадь перпендикулярного сечения; Sбок – площадь боковой поверхности, V – объем, H – высота, то:
2º. Прямой называется призма, если ее боковые ребра перпендикулярны плоскостям оснований. Прямая призма называется правильной, если в ее основаниях лежат правильные многоугольники. 3º. Прямоугольным параллелепипедом называется прямая призма, основания которой – прямоугольники. Если a, b, c – измерения параллелепипеда, d – диагональ, то:
4º. Куб – прямоугольный параллелепипед, у которого все ребра равны (a – ребро).
5º. Пирамидой называется многогранник, одна из граней которого – произвольный многоугольник (основание), а остальные грани (боковые грани) – треугольники, имеющие общую вершину. Если Sосн – площадь основания, V – объем, H – высота, то:
Если все боковые ребра пирамиды равны между собой, то: 1) боковые ребра образуют с плоскостью основания равные углы; 2) вершина пирамиды проектируется в центр описанной около основания окружности. Если все боковые грани пирамиды наклонены к основанию под одним и тем же углом α, то: 1) апофемы всех боковых граней равны; 2) вершина пирамиды проектируется в центр окружности, вписанной в основание; 3) 6º. Пирамида называется правильной, если ее основанием является правильный многоугольник, а высота проходит через его центр. Если P – периметр основания, l – апофема, Sбок – площадь боковой поверхности, то:
6º. Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию. Для произвольной усеченной пирамиды:
для правильной усеченной пирамиды: где S1 и S2 – площади оснований, h - высота, V – объем, P1 и P2 – периметры оснований, l – апофема; Sбок – площадь боковой поверхности. Пример 49. В основании пирамиды лежит треугольник со сторонами 6 см, 8 см, 10 см и все боковые ребра образуют с основанием углы по 45º. Тогда объем пирамиды равен: 1) 62 см3 2) Решение. Дано: MABC – пирамида,
Так как
В ΔAOM (
Ответ: Пример 50. Пусть в треугольной пирамиде все боковые грани образуют с плоскостью основания углы по 60º, и в основание вписан круг площадью 9π см2. Тогда высота пирамиды равна: 1) 3 см 2) Решение. Пусть радиус круга, вписанного в основание пирамиды, - r. Тогда площадь круга S равна: Ответ: высота пирамиды равна Пример 51. В основании прямоугольного параллелепипеда лежит квадрат площадью 16 см2. Через одну из сторон нижнего основания и противоположную сторону верхнего проведена плоскость. Площадь полученного сечения равна 20 см2. При этом полная поверхность параллелепипеда равна: 1) 96 см2 2) 48 см2 3) 40 см2 4) 80см2 5) 56 см2.
Дано: ABCDA1B1C1D1 – прямоугольный параллелепипед, ABCD – квадрат,
По условию Тогда Вычислим СС1. По условию Из ΔBCC1: Окончательно, Ответ:
Дидактический материал. 1. Если боковая поверхность правильной четырехугольной призмы равна 40 см2, а полная 90 см2, то высота призмы равна: 1) 5 см 2) 4 см 3) 2 см 4) 3 см 5) 10 см. 2. Высота правильной треугольной пирамиды равна равна 6 см. На расстоянии 3 см от вершины проведена плоскость, параллельная основанию. Площадь полученного сечения равна 5 см2. Тогда объем данной пирамиды равен: 1) 40 см2 2) 120 см2 3) 20 см2 4) 25 см2 5) 60 см2. 3. Если площадь основания правильного параллелепипеда равна 9 см2, а его полная поверхность равна 66 см2, то объем параллелепипеда равен: 1) 40 см3 2) 48 см3 3) 36 см3 4) 32 см3 5) 64 см3. 4. В основание правильной четырехугольной пирамиды вписан круг радиуса 2 см. Боковые грани составляют с плоскостью основания углы 60º. При этих условиях полная поверхность пирамиды равна: 1) 48 см2 2) 32 см2 3) 64 см2 4) 24 см2 5) 36 см2. 5. Около основания правильной шестиугольной призмы описана окружность радиуса 3 см. Высота призмы 4 см. Тогда площадь боковой поверхности призмы равна: 1) 84 см2 2) 36 см2 3) 72 см2 4) 54 см2 5) 42 см2. 6. В основании пирамиды лежит треугольник со сторонами 6 см, 8 см и 10 см. Все боковые грани образуют с основанием углы 60º. В этих условиях площадь полной поверхности пирамиды равна: 1) 72 см2 2) 64 см2 3) 48 см2 4) 56 см2 5) 88 см2. 7. В основании пирамиды лежит прямоугольный треугольник с катетами 6 см и 8 см. Объем пирамиды равен 40 см3. Все боковые ребра наклонены к плоскости основания под одинаковым углом. Этот угол равен: 1) 45º 2) 30º 3) 60º 4) 15º 5) 22º15´. 8. объем правильной треугольной призмы равен 1) 6 2) 8 3) 15 4) 9 5) 12. 9. Объем куба равен 1)
![]() ![]() Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ![]() Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ![]() ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|