|
Алканы. Строение. Химические свойства. Механизм радикального замещения в алканах на примере реакции бромировання метана.Алканы (также насыщенные алифатические углеводороды, парафины) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулойCnH2n+2.
Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С идентичны по форме и энергии, 4 связи направлены в вершины тетраэдра под углами 109°28'. Связи C—C представляют собой σ-связи, отличающиеся низкой полярностью и поляризуемостью. Длина связи C—C составляет 0,154 нм, длина связи C—H — 0,1087 нм. Простейшим представителем класса является метан (CH4).
Алканы называют также парафиновыми углеводородами или парафинами (от лат. parum affinis — не обладающие сродством). Это название отражает низкую химическую активность алканов при комнатной температуре. Причина невысокой реакционной способности кроется в специфике строения молекул парафиновых углеводородов. В молекулах алканов орбитали всех атомов углерода находятся в состоянии sр3-гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в вершины равносторонней треугольной пирамиды — тетраэдра. Углы между орбиталями равны 109°28'. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму. Молекулы имеют зигзагообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109°28'), например в молекуле н-пентана. Все связи в молекулах алканов одинарные. Перекрывание происходит по линии, соединяющей ядра атомов, т. е. это σ-связи. Связи углерод—углерод являются неполярными и мало поляризуемыми. Длина С—С-связи в алканах равна 0,154 нм (1,54 • 10- 10 м). Связи С—Н несколько короче. Электронная плотность лишь немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С—Н является слабополярной. Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов. Алканы имеют низкую химическую активность. Это объясняется тем, что единичные связи C—H и C—C относительно прочны, и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С—Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов. Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-излучением или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана до тетрахлорметана. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования. Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н -алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, алкан легче становится донором электрона. Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно с последовательным образованиемхлорметана, дихлорметана, хлороформа и тетрахлорметана: за один этап замещается не более одного атома водорода: Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, отрывая у них атом водорода, в результате этого образуются метильные радикалы ·СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы. Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах. Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя. С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или подходящим растворителем. Сульфохлорирование (реакция Рида) При облучении УФ-излучением алканы реагируют со смесью SO2 и Cl2, После того, как с уходом хлороводорода образуется алкильный радикал, присоединяется диоксид серы. Образовавшийся сложный радикал стабилизируется захватом атома хлора с разрушением очередной молекулы последнего. Инициирование цепного процесса: Развитие цепного процесса: Образовавшиеся сульфонилхлориды широко применяются в производстве ПАВ.
Нитрование (реакция Коновалова). Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных: Имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов. Реакции окисления Автоокисление Окисление алканов в жидкой фазе протекает по свободно-радикальному механизму и приводит к образованию гидропероксидов, продуктов их разложения и взаимодействия с исходным алканом. Схема основной реакции автоокисления: Горение Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример: Значение Q достигает 46 000 — 50 000 кДж/кг. В случае нехватки кислорода вместо углекислого газа получается оксид углерода(II) или уголь (в зависимости от концентрации кислорода). Каталитическое окисление В реакциях каталитического окисления алканов могут образовываться спирты, альдегиды, карбоновые кислоты. При мягком окислении СН4 в присутствии катализатора кислородом при 200 °C могут образоваться: · метанол: · формальдегид: · муравьиная кислота: Окисление также может осуществляться воздухом. Процесс проводится в жидкой или газообразной фазе. В промышленности так получают высшие жирные спирты и соответствующие кислоты.
Реакция окисления алканов диметилдиоксираном: Механизм реакций получения кислот путём каталитического окисления и расщепления алканов показан ниже на примере получения из бутана уксусной кислоты: Разложение Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов. Примеры: Крекинг При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов. В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10—15 атомов углерода в углеродном скелете) и фракции солярового масла (12—20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания. В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °C и низком давлении — 10—15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой. Для метана: 2CH4 → C2H2 + 3H2 — при 1500 °C. Дегидрирование 1) В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода: Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2O3, Cr2O3, например, образование этилена из этана: 2) В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов, например, бутадиена-1,3 и бутадиена-1,2 из бутана: 3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных: Конверсия метана В присутствии никелевого катализатора протекает реакция: Продукт этой реакции (смесь CO и H2) называется «синтез-газом». Реакции электрофильного замещения Изомеризация: С марганцовокислым калием (KMnO4) и бромной водой (Br2) алканы не взаимодействуют.
Метан CH₄ относится к предельным углеводородам. Для предельных углеводородов характерна реакция замещения. Эта реакция идет по свободно радикальному механизму. Реакция с бромом Br₂ происходит на свету, в броме происходит разрыв связи Br··Br ⇒ 2Br· Образуется 2 атома брома с одним неспаренным электроном. Один атом брома отрывает атом водорода от метана, образуется бромистый водород и метил радикал. Дальше идет цепная реакция: ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|