|
Гибридогенез и сетчатое видообразованиеГибридизация, в том числе отдаленная, известна с незапамятных времен. Ее практиковали уже древние народы Передней Азии со времен неолита. Так, систематически скрещивая осла с кобылой, они получали мулов, отличавшихся повышенной мускульной силой и выносливостью. Вместе с тем они хорошо знали, что мулы не дают потомства. В те же далекие времена в природе был обнаружен и введен в культуру спонтанно возникающий плодовитый аллополиплод сливы — гибрид алычи и терна. Бесплодие подавляющего большинства гибридов или их реверсия к родительским формам на протяжении веков служили важнейшей опорой представления о постоянстве видов. Нестройные голоса первых инакомыслящих стали раздаваться только в XVIII в. Самый авторитетный принадлежал Карлу Линнею. Хрестоматийный характер приобрело высказывание Линнея о том, что «существует столько видов, сколько их создало бесконечное существо». Оно переходило из одного учебника по эволюционной теории в другой, причем без указания источника. Одним из первых его привел в своем «Курсе дарвинизма* (1945) А.А. Парамонов (с. 29). Действительно, эта формула наглядно свидетельствовала о следовании Линнея господствовавшим креационистским взглядам на постоянство видов в начале творческого пути (первые издания «Системы природы», «Основании ботаники»). Од- нако впоследствии Линней изменил свои взгляды и под влиянием фактов счел возможным допустить возникновение новых видов путем гибридизации. Толчком послужило обнаружение среди зигоморфных цветков обыкновенной льнянки (Linaria vulgaris) цветков с пелорическим венчиком (Линней, 1989. С. 352). Из этого факта Линней сделал предположение, что растение с правильным актиноморфным венчиком (пелория) — это новый вид, возникший в результате скрещивания видов льнянки с неправильными (зигоморфными) венчиками. Линней также пришел к выводу, что вид бодреца Pimpinella agrimmides мог произойти в результате скрещивания Pimpinella sanguisorba minor laevis с репейником Agrimonia offici-narum, а вид вероники Veronica spuria явиться продуктом гибридизации Veronica maritima и вербены Verbena ofTicinalis. При этом Линней подметил любопытную общую закономерность: гибриды в строении цветка чаще походят на материнский вид, а в строении листвы — на отцовский. Уделив большое внимание гибридизации, Линней одним из первых получил путем опытного скрещивания в научных целях гибрид Tragopogon pratensis. Эти эксперименты он продолжал до конца своих дней. Линней поддерживал также аналогичные работы своих учеников, которые в период 50—70-х годов публиковались в сборниках <<Amoenitates Academiae» и воспринимались как выражающие взгляды своего учителя. Допущение Линнеем возможности появления новых видов в пределах рода в результате гибридизации получило отражение в ряде его работ, в особенности в труде «О существовании пола у растений», представленном на конкурс Санкт-Петербургской академией наук, опубликованном в 1760 г. и удостоенном премии. Мы находим его также в «Родах растений» издания 1763 г. и в 13-м издании «Системы природы» (1774), где вместо прежнего принципа «nulla species nova» (никаких новых видов) Линней отметил, что «бесконечное существо создало в продвижении от простого к сложному, от малого к многому столько растений, сколько есть ныне отрядов. Затем в результате гибридизации возникли современные роды. Затем Природой были созданы виды» (цит. по: Воронцов, 1999. С 184-185). Высоко оценивая заслуги Линнея как «провозвестника эволюционизма», Н.Н. Воронцов (там же, с. 190) пишет, что «Линнею были свойственны определенные элементы эволюционного подхода: он допускал возможность гибридогенного происхождения новых видов от старых». Во второй половине XVH1 в. в связи с развитием селекционной практики фактическая база опытной гибридизации заметно расширилась. Среди последователей Линнея появились натуралисты с известными именами, такие, как А. Дюшен, Жорж Бюффон, А.Т. Болотов и Эразм Дарвин. Однако следующая важная веха в развитии проблемы приходится уже на начало XX в, и связана с именем голландского генетика Яна Лотси, сторонника постоянства видов. Первоначально Лотси изложил свою гипотезу «эволюции при постоянстве вида» в двух работах (Lotsy, I9I4, 1916) и в дальнейшем пропагандировал ее до конца жизни (Lotsy, 1925a, 1925b). Нужно сказать, что с признанием ему не слишком повезло — и в основном из-за приверженности идее постоянства. В начале XX в. эта идея неоднократно возрождалась в разном одеянии и в разных странах — но, ввиду того что основная победа над ней уже была одержана дарвинистами и ламаркистами в XIX в., ее повторное явление на свет вызывало особое возмущение эволюционистов. В России и Советском Союзе гипотезу Лотси всегда подвергали и еше недавно продолжали подвергать уничтожающей критике (Филип-ченко, Четвериков, Комаров, отчасти Вавилов; Гайсинович, 1988. С. 229—230), зачастую приписывая ее автору несвойственные ему взгляды и не давая себе труда заглянуть в подлинники. Сейчас, когда страсти по постоянству видов давно улеглись и даже появление научного креационизма не вызывает активной реакции отторжения, можно спокойно и объективно оценить и Лотси. Вспомним в этой связи, что в свое время никто не сделал так много для грядущего торжества идеи эволюции, как два истых апологета фиксизма — Линней и Кювье. Свою главную книгу «Эволюция путем гибридизации» (Lotsy, 19I6) Лотси посвящает памяти Чарлза Дарвина и, хотя развивает в ней отнюдь не дарвиновскую концепцию, цитирует его сочинения как самые авторитетные источники чуть ли не на каждой второй странице. Сведения же из Дарвина о плодовитых гибридах у растений и животных воспроизводит с особой полнотой. Лотси практиковал в своем саду ^ (1867-1931) шиванию разных видов львиного зева (Antirrhinum), энотеры (Oenothera) и некоторых других растений и был в курсе аналогичных экспериментов Э. Баура и Г. де Фриза. Эти опыты, а также классическое исследование В. Иоганнсена (1903) убедили Лотси, что чистые виды, как всегда представленные гомозиготными формами, абсолютно постоянны. Утвердившись в этом представлении, он, естественно, не мог согласиться с теорией де Фриза (за исключением идеи о регрессивных мутациях, при которых, однако, полагал эволюцию немыслимой), решительно отрицал существование наследственной изменчивости и считал себя вправе заявить, что эволюция в дарвиновском понимании невозможна. При постоянстве видов их эволюционные преобразования возможны, по убеждению Лотси, только благодаря межвидовой гибридизации. Этому механизму Лотси придает значение единственного фактора эволюции и многократно повторяет это утверждение в своей книге, часто выделяя его курсивом. «Когда природа разрешает скрещивания, — пишет Лотси, — начинается эволюция; когда скрещивания становятся невозможными, она приостанавливается» (op. cit., p. 99). Соответственно, все живые диплоидных организмы видятся Лотси гибридными, их лишь ошибочно принимают за чистые формы. Вот почему, в частности, не представляется возможным доказать проявление мутационной изменчивости, если бы таковая и существовала. Тем самым Лотси все же признает видовую наследственную изменчивость, но только комбинативную. Он указывает на своего предшественника — австрийского ботаника А. Кернера (Кегпег, 1863), который первым обосновал механизм гибридогенного видообразования. Опираясь на закон расщепления Менделя и производя простые математические расчеты, Лотси показывает, что с увеличением числа поколений гибридов, размножающихся в себе (инцухт), доля гомозиготных особей неуклонно возрастает и при миллионе потомков только две остаются гетерозиготными. В природе эта теоретически непреложная закономерность в силу разных обстоятельств часто нарушается, но, сколько бы гомозигот ни образовалось, они уже составляют новые константные виды. В принципе такое возможно уже со второго поколения. Как известно, такой способ видообразования подтвержден современной генетикой (Грант, 1991. С. 263). Подобно тому как каждый индивид имеет двух родителей, так и каждый вид должен иметь два предковых вида, но попытаться определить их — совершенно безнадежная задача ввиду беспорядочности происходящих в природе скрещиваний и частого вы- миракия родительских видов. Поэтому филогения представляется Лотси не наукой, а «продуктом фантастических спекуляций» (Lotsy, 19I6. Р. 140). Именно Лотси положил начало широкой политипической концепции вида, предложив различать наряду с обычными лин-неевскими видами — линнеонами — их более мелкие подразделения — элементарные виды, или чистые формы — жорданоны3. Только последние и представляют собой истинные виды, реально существующие в природе. Различия между ними субстанциональные: у каждого свой состав плазмы и, соответственно, особая конституция образуемых гамет. О том, каковы они конкретно, нам ничего не известно. Лотси допускает адаптацию линнеонов к среде и считает доказанным существование естественного отбора, но трактует эти механизмы вразрез с представлениями Дарвина. Приспособление, по его мнению, достигается исключительно изменением состава лин-неона вследствие внутривидовых скрещиваний и вымирания менее приспособленных жорданонов. Что касается отбора, то его роль всегда негативная: он причина не появления, а вымирания форм. Вымирание начинается сразу после рождения нового линнеона. С течением времени в ходе борьбы за существование число составляющих его жорданонов неуклонно сокращается (этому сопутствует и уменьшение числа скрещиваний), пока в конце концов не остается один, сохранение которого в рамках чистого инцухта тоже не может быть гарантировано. Аналогичный механизм определяет и судьбу высоких таксонов вплоть до класса. Таким образом, все ныне существующие линнеевские виды, по Лотси, — это реликты более широких групп, некогда возникших путем скрещивания. В далекие эпохи отдаленные скрещивания время от времени давали исключительные результаты — возникали новые планы строения, появлялись новые классы. Лотси допускал, например, что позвоночные животные могли появиться в результате гибридизации двух представителей беспозвоночных (op. cit., p. 147). Из всего сказанного видно, что Лотси слишком «обделил» природу, оставив в ее распоряжении лишь один механизм самосохранения и развития — гибридизацию. Он также слишком переоценил креативные потенции гибридизации, так что собственно эволюция предстала как процесс деградации, перехода от 3 Названы в честь французского ботаника Алексиса Жордана, впервые установившего, что линнеевский вид есть совокупность многих наследственно различных чистых форм. сложного к более простому, заполняющий промежутки между двумя плодотворными актами гибридизации. По существу, его гипотеза напоминала концепцию В. Бэтсона, хотя возможность эволюции путем утраты генов Лотси решительно отрицал. В заключение этого анализа хотелось бы отметить, что при всех крупных ошибках Лотси, ясно выявившихся в ходе дальнейшего развития науки, созданная им концепция отличается цельностью, а также полнотой охвата эволюционной проблематики. В соответствии с ее логикой Лотси отрицал какую бы то ни было продуктивность понятия гомологии, развивал идею полифилетического и политоп-ного происхождения видов, был одним из первых сторонников цикличности эволюции. Несомненная заслуга Лотси состоит в том, что он привлек внимание к симгенетическому формообразованию и в полной мере осознал огромное эволюционное значение возникновения раздельнополости, диплоидности и полового размножения. Лотси совершенно справедливо отмечал, что только с появлением атрибутов жизни возникла и комбинативная изменчивость, а вместе с ней стала возможной настоящая прогрессивная эволюция. Если на Западе не нашлось сколько-нибудь крупного ученого, который бы творчески развивал идеи Лотси, то, как это ни парадоксально, убежденный последователь его доктрины обнаружился в коммунистическом Советском Союзе. Им стал известный ботаник, один из основателей флорогенетики — науки о зарождении и развитии флоры земного шара — М.Г. Попов.
Стержневая идея всего будущего научного творчества Попова о гибридизации как источнике всего неисчерпаемого разнообразия растительного мира зародилась у него в конце 1920-х гг., когда с помощью мор-фолого-географического метода он исследовал происхождение главных родов средиземноморской флоры (Попов, 1927, 1928). Уже тогда он пришел к выводу, что эта флора возникла в результате обширных гибридизацион-ных процессов. В дальнейшем он (Попов, 1954, 1956, 1963) превратил гибридизацию в универсальный инструмент образования у растений новых видов, родов, семейств, порядков и даже целого типа покрытосеменных. Вкратце содержание его гипотезы заключается в следующем. Основным путем образования новых форм растений во все времена была гибридизация. Ее формообразовательная эффективность тем выше, чем дальше друг от друга морфологически отстоят скрещивающиеся родительские виды. В гибридном потомстве от взаимно далеких видов часто возникают резко отличные формы, вполне или частично константные, — так называемые нодэны (по имени французского ботаника Ш. Нодэна, изучавшего последствия экспериментальной межвидовой гибридизации). Вместе с тем частота таких «продуктивных» отдаленных скрещиваний в природе прямо пропорциональна близости скрещивающихся форм, и, стало быть, в случае гибридизации представителей высших таксонов она крайне низка и происходит раз в десятки и сотни тысяч лет, а то и на порядок реже. Этим не исчерпываются препятствия, стоящие на пути рождающегося нового вида. Из тысяч и десятков тысяч «странных новообразований» только один нодэн даст начало новому виду, и то если он найдет подходящую экологическую нишу и ему будет благоприятствовать отбор. Остальные погибнут или останутся в числе немногих особей в составе популяций старых видов. Но и они вскоре будут поглощены возвратным скрещиванием, если не окажутся изолированными физиологическими или пространственными барьерами. Отсюда, по мнению Попова, понятен медленный темп эволюции. Попов указывал также, что при гибридогенном видообразовании эволюция и, соответственно, систематика целых групп растений не могут изображаться в форме древа и принимают вид сети (Попов, 1954. С. 879-880). Отметим, что, игнорируя данные генетики, Попов полагал, что возникающие при гибридизации новые признаки и свойства оказываются следствием взаимодействия разных комплексов аминокислот, комбинации которых безграничны. Развивая свою гипотезу, Попов пришел к категорическому вы-, воду о возникновении покрытосеменных eflHHQTBeHHbiM путем — скрещиванием древних групп голосеменных гнетовых с беннет-титовыми (цикадовыми). К такому же заключению много рань- ше Попова пришел американский ботаник Э. Андерсон (Anderson, 1934) — и его приоритет Попов специально отмечает — а вслед за ним и другой американский ботаник — Д. Стеббинс (Stebbins, 1950). Именно такое статистически «крайне невероятное», по словам Попова, скрещивание привело к появлению Angiospermae, Вскрывая существо вопроса, Попов писал: «Величайшее событие, рождение покрытосеменных, т.е. скрещивание Гнетовых с Беннеттитовыми, подготовлялось миллионы лет, прежде чем со-вершилось <„.> "чисто случайно", по-видимому только в одном месте Земли и только однажды» (Попов, 1956. С. 769). Гипотезу Попова часто подвергали критике как за претензию на универсальность, так и за слепое следование «реакционным» идеям Лотси, но автор продолжал упорно ее отстаивать. Конечно, как это станет ясно читателю из последующих разделов книги, представления Попова о случайности и частоте-редкости описываемых феноменов не соответствуют новейшим представлениям, но сама идея об отдаленном гибридогенезе как источнике видообразования обрела прочный статус одного из распространенных путей эволюции. Решающим доказательством реальности гибридогенного видообразования в природе послужили работы по экспериментальному синтезу новых видовых форм и по рссинтезу существующих. Они положили начало экспериментальному моделированию тех механизмов эволюционного процесса, которые осуществляются посредством полиплоидии и гибридизации. Вместе с тем эти работы открыли совершенно новые перспективы перед селекционной практикой. Мировую известность приобрели эксперименты Г.Д. Карпечен-ко по синтезу межродового гибрида между редькой (Raphanus sativus) и капустой (Brassica oleracea), опубликованные в 1924-1927 гг. и описанные затем рильность, неизменно возникающая вследствие нарушения конъюгации хромосом в мейозе из-за негомологичности хромосом гаплоидных гамет. В данном же успешном эксперименте Карпечен-ко имел дело с нередуцированными диплоидными гаметами. Трудно сказать, знал ли Карпеченко работу датского генетика О. Винге (Winge, 1917), который первым высказал предположение, что восстановление нормального мейоза и плодовитости у межвидовых гибридов может быть достигнуто только в случае удвоения числа хромосом. Однако Карпеченко поступил именно так, как если бы ему было известно это указание. В дальнейшем удвоение хромосомного набора у родительських видов для получения автополиплоидов стали осуществлять, применяя искусственные агенты — высокие и низкие температуры, химические и радиационные мутагены.
Оценивая экспериментальный синтез нового вида, осуществленный Карпеченко, Н.Н. Воронцов отмечает, что это был первый случай конструирования нового генома, т.е. применения той технологии, которая через полвека получила название генетической инженерии (Воронцов, 1999. С. 479-480). Экспериментальные работы, связанные с преодолением генетических трудностей на пути к созданию новых аллополиплои-дов, послужили отправной точкой для разработки Карпеченко (1935) строго научной теории отдаленной гибридизации, которая не утратила своей ценности до сегодняшнего дня. В этом же ряду стоят опытные работы по межвидовой и межродовой гибридизации (за исключением мнимой «вегетативной») плодово-ягодных культур, на протяжении длительного времени проводившиеся И.В. Мичуриным. Наука требует объективности: пора освободить имя этого выдающегося селекционера-самоучки от довлеющего над ним груза тех трагических ассоциаций, в которых он неповинен! Среди многочисленных гибридов, полученных Мичуриным, особый теоретический интерес представляет синтез приниипиаль* но нового растения — церападуса, полученного от скрещивания вишни Prunus chamaecerasus и черемухи Padus padus maakii. Мичурин считал церападус новым зарождающимся видом (см.: Мичурин, 1939. Т. 1). В дальнейшем опытным путем было получено огромное число новых амфидипломных форм, большая часть которых не встречается в природе. В этом направлении особенно успешной была деятельность сотрудников Н.И. Вавилова и шведского генетика А. Мюнтцинга. Простое перечисление всех этих форм заняло бы несколько страниц, и в этом нет никакой необходимости. Обратим лишь внимание на хозяйственно наиболее значимые. Многолетние работы по совершенствованию ржано-пшенич-ных гибридов, начатые Г.К. Мейстером в 1918 г. и продолженные целой плеядой известных селекционеров, увенчались созданием октоплоидного сорта тритикале (Мюнтцинг, 1977), обладающего рядом ценных свойств. Много новых хозяйственнозначимых форм принесли опытные скрещивания культурных злаков с дикими, например твердой и мягкой пшеницы с разными видами пырея, осуществлявшиеся под руководством Н.В. Цицина (1960). В частности, полученная им октоплоидная многолетняя пшеница Triticum agropyrotriticum Cicin содержит 2л = 56 хромосом, из которых 42 от пшеницы и 14 от пырея. Ресинтез ряда культурных и диких растений неопровержимо свидетельствовал об их гибридогенном происхождении. Так, сотрудник Вавилова В.А. Рыбин скрещиванием терна (Prunus spin-osa) и алычи (P. divaricata) воссоздал культурную сливу (P. domes-tica); болгарский генетик Д.Костов, временно работавший в СССР, объединением двух диплоидных дикорастущих видов табака (Nicotiana silvestris и N. tomentosus) ресинтезировал культурный табак (N. tabacum); А. Мюнтиинг получил дикорастущий вид пикуль-ника (Galeopsis tetrahit) путем гибридизации двух видов (G. spe-ciosa и G. pubescens). Продолжая развивать работы учеников Мюнтцинга и Вавилова, американский генетик Д.Л. Стеббинс в ] 940-1950-е годы экспериментально получил такие аллополиплоиды, которые содержали в своем геноме хромосомные наборы как минимум четырех биологических видов (Stebbins, 1950). Впоследствии он доказал, что подобные гибридные виды, имеющие не менее четырех предков, распространены и в природе (Stebbins, 1974, 1982). Гибридные формы, происходящие от четырех видов, образуются поэтапно. Сначала возникают аллотетраплоиды (по числу сочетаний из 4 их может быть 6 вариантов) — продукты слияния га- мет с нередуцированными наборами хромосом. На следующем этапе в случае повторного нарушения редукции в мейозе слияние тет-раплоидных гамет может дать рад вариантов аллооктоплоидов, т.е. форм с вторично дуплицированным числом хромосом. Если гиб-ридизационный процесс продолжится, то возможно и возникновение таких форм, предками которых будут, например, четыре диплоидных и два аллотетраплоидных вида. В любом случае нескрещиваемость разнохромосомных видов преодолевается сохранением в гаметах диплоидного числа хромосом. Такие сложные формы Стеббинс предложил называть полиплоидными комплексами (compilospecies). В 1970-е годы американский генетик и ботаник В. Грант (1980, 1991) выделил отдельный способ гибридного видообразования с участием внешних преград, обеспечивающих изоляцию нарождающихся видов от других. К этим преградам он относит экологическую и сезонную изоляцию, а также особенности строения цветка. Различия между видами, ведущие к возникновению таких преград, находятся под контролем определенных генов. У потомков естественных межвидовых гибридов происходит расщепление по этим генным различиям, и у новых продуктов этого расщепления возникает новая комбинация признаков, создающая основу для появления новых изолированных субпопуляций. Если изоляция последних сохранится и далее, то из них разовьются новые виды. Примеры такого способа гибридогенно-го видообразования пока единичны, и они не обладают полной достоверностью. Подводя итог рассмотрению гибридогенного способа видообразования у растений, подчеркнем его чрезвычайно широкое распространение в природе. По данным Стеббинса и Аи алы (1985) 47 % покрытосеменных представляют собой полиплоиды, среди которых подавляющее большинство относится к аллополиплои-дам. М.Д. Голубовский (2000) в своей новой книге поднимает эту цифру даже до 52—58 %, К этому огромному числу гибридных видов следует добавить формы культурных растений, синтезированных методами экспериментальной полиплоидии. Во второй половине XX в. полиплоидное и гибридогенное формообразование было обнаружено и в мире животных. Оно зафиксировано преимущественно в группах, размножающихся партено-генетически или бесполым путем. Ю.И. Полянский (1960, 1971 и позднее) не только установил сами факты регулярности полиплоидных процессов среди радиолярий, инфузорий, амеб и других простейших, но и показал, что полиплоидия у них служила основой прогрессивной эволюции. Б.Л. Астауров еще в 1930-е годы выдвинул гипотезу о существовании естественной полиплоидии у бисексуальных животных, а в дальнейшем подтвердил ее в своих экспериментах по получению межвидовых гибридов тутового шелкопряда — Bombyx morixB. mandarina (Астауров, Острякова-Варшавер, 1957). Фактически Астауров, добиваясь 100-процентного выхода однополого потомства с нужными свойствами, получил целую серию форм разного уровня плоидности. С этой целью он использовал не только сложные схемы скрещиваний, но и промежуточную стадию искусственно вызванного партеногенетического размножения. Конечным этапом этих процедур оказались аллополиплоидные бисексуальные насекомые, способные к самостоятельному размножению. Многолетние эксперименты дали основание Астаурову (1969) заявить, что он рассматривает их как модель эволюционных процессов в естественных популяциях некоторых групп животных. Одна из первых догадрк о существовании полиплоидии и гибридизации у позвоночных принадлежит шведскому зоологу Г. Свердсону (Svardson, 1945). По его мнению, таким путем могло возникнуть семейство лососевых рыб. Кариологические исследования и данные электрофореза, полученные в 1970-е годы B.C. Кирпичниковым (1979) и Ю.ГТ. Алтуховым (1989), подтвердили это предположение и выявили другие группы рыб, в эволюции которыхтибридизационные процессы играли важную роль. Полная сводка всех известных фактов этого рода содержится в книге В.П. Васильева (1985). Л.Я. Боркин и И.С. Даревский (1980) описали неординарный тип гибридргеиного видообразования у ряда амфибий (роды Ambystoma и Rana) и рептилий (роды Lacerta и Chemidophorus). Они, в частности, указали, ссылаясь на работы Л. Бергера (Berger) и других исследователей, что обычная прудовая лягушка Rana escu-ienta представляет собой гибридную форму от скрещивания R. lessonae и R. ridibunda. Эти авторы изложили концепцию последовательной гибридизации с обязательной промежуточной фазой образования диплоидной гибридной клональной и, как правило, однополой формы. Эту концепцию ныне разделяют большинство специалистов. Она предполагает существование как минимум трех основных генетических этапов гибридогенного видообразования, ведущих к алло-тетраплоидии у позвоночных. На первом этапе в результате гибридизации на уровне бисексуальных нарождающихся диплоидных видов может образовать- зоо ся диплоидная форма, переходящая к клональному размножению путем гиногенеза (рыбы), «одалживания» отцовского генома на одно поколение (рыбы, бесхвостые амфибии) или партеногенеза (хвостатые амфибии, рептилии). На втором этапе вледствие возвратной гибридизации этой диплоидной однополой формы с одним из родительских видов может возникнуть триплоидная однополая форма, размножающая с помощью гино- или партеногенеза. Наконец, на третьем этапе в результате скрещивания этой последней с одним из близких бисексуальных диплоидных видов может появиться тетраплоидная форма, способная вернуться к нормальному бисексуальному размножению (рис. И), Авторы отмечают, что эта схема (второй и третий этапы) хорошо согласуется с экспериментально подтвержденной гипотезой Б.Л. Астау-рова (1969) о непрямом развитии естественной полиплоидии у шелковичного червя. Для биолога должен составить особый интерес феномен «одалживания* генома самцов: он сливается с геномом гибридных самок в процессе оплодотворения, но элиминируется у их потомков в ходе мейоза. В последнее время этот феномен стали обнаруживать также в развитии некоторых гибридных беспозвоночных.
В ходе дальнейшего изучения мировой фауны ящериц общее число видов гибридогенного происхождения из разных семейств увеличилось до 40 (Даревский, 1995). Обнаружены они в самых различных частях земного шара. Таковы 14 видов североамериканского рода Cnemidophorus, комплекс видов западноавстралийских гекконов Heteronotia binoei, гекконы сборного вида Lepidodactylus lugubris с тихоокеанских островов, 5 кавказских партеногенетиче-ских видов скальных ящериц рода Lacerta, а также вьетнамская триплоидная ящерица Leioiepis guntherpetersi. Все они появились сравнительно недавно — в голоцене или плейстоцене. Достаточно подробно изучены скальные ящерицы горного Кавказа (Даревский, 1967; Даревский, Гречко, Куприянова, 2000). Из 18 обитающих здесь видовых форм 7 представлены партено-генетическими самками, предположительно образовавшимися в результате серии актов естественной межвидовой гибридизации. Самки этих видов, имеющие диплоидный набор хромосом (2л = 38), легко спариваются с самцами бисексуальных видов, включая в свой геном мужской гаплоидный набор хромосом. В результате их потомство становится триплоидным (Зл = 57), и в нем сочетаются признаки материнского и отцовского видов {с преобладанием материнских). Триплоидные формы размножаются исключительно партеногенетически. В смешанных гибридных популяциях на их долю приходится иногда до 10-12 % от общей численности особей. Как и все нечетно-полиплоидные организмы, они лишены эволюционной перспективы. Автор (Даревский, 1995) полагает, что партеногенетические виды ящериц возникали в истории их рода многократно путем скрещивания одних и тех же родительских пар. Некоторые однополые виды представляют собой отдельные клоны или совокупность немногих клонов, берущих начало от одной или нескольких самок-прародительниц. Существование партеногенетических форм дает виду биологическое преимущество: благодаря тому, что потомство оставляют все особи популяции, темп размножения вида удваивается, и это способствует поддержанию его численности на высоком уровне. Плодовитые гибриды, встречающиеся в природе среди млекопитающих, были изучены, в частности, Н.Н. Воронцовым. В последней книге (Воронцов, 1999) он привел случаи скрещивания между малым (Spermophilus pygmaeus) и крапчатым <Sp. susticus), между большим (Sp. major) и краснощеким {Sp. erythrogenys) сусликами. Еще три десятилетия назад Э. Майр специально отмечал, что гибридогенное видообразование хотя и часто постулировалось, но ни разу не было доказано. Сейчас можно с уверенностью заявить, что оно точно доказано всей совокупностью цитогенетических, биохимических, иммунологических и морфологических методов.
Из всего сказанного в этом раз-деле следует, что рассмотренные факты гибридогенного формообразования демонстрируют принципиально недарвиновский механизм видообразования: во всех описанных случаях происходит не разделение (дивергенция) филетических линий, а их схождение. Схематически этот процесс можно отобразить в виде сетки, совершенно аналогичной той, которая возникает при построении полной генеалогии любого человеческого рода. Отсюда второе название гибри-догенного формообразования — сетчатое, а в английском звучании — ретикулярное видообразование (или эволюция) (рис. 12). Этот термин ввел в биологию Ф.Г. Добжанский (1937)4. Симбиогенез Кроме гибридогенеза в природе существует и такой способ объединения разнородных организмов с образованием новых, при котором слияния геномов исходных форм не происходит. В результате образуются организмы-кентавры, классическим примером которых могут служить лишайники. Впервые мысль о двойственной природе этих растений была высказана швейцарским ботаником С. Швенденером (Schwendener, 1869). В начале 1880-х годов она получила полное подтверждение. Было доказано, что лишайники представляют собой продукты эволюционного объединения гриба и водоросли, т.е. получилось, что целый отдел царства растений возник не путем дивергенции, а с помощью обратного процесса — слияния ранее совершенно самостоятельных организмов. Однако, как показала Л.Н. Хахина(1973, 1975, 1979), заслуга в изучении этого удивительного феномена, поразившего многих современников, в гораздо большей степени принадлежит русским ботаникам, которые в ряде моментов даже чуть опередили своего швейцарского коллегу. В 1867 г. А.С. Фаминцын и О.В. Баранецкий опубликовали на немецком языке (Famintsin, Baranetsky) сообщение об опытах, в которых им удалось отделить гон иди и (одноклеточные зеленые водоросли) лишайника от его бесцветного слоевища. ГонИдии оказались способными к самостоятельному существованию в культуре, подобно своим свободноживушим собратьям, образовывали споры и по строению весьма походили. на таковых рода Cystococcus. Из соображений научной щепетильности авторы еще не заявили о двухкомпонентной природе лишайника, они воздержались от принятия этой идеи и тогда, когда ее высказал Швен- 4 Как будет показано в гл. II «Номогенез», уже Д.Н. Соболев (1913) пользовался термином *сеть скрещивания» для отображения соответствующих генеалогических сетей. денер, но сделанное ими открытие фактически уже означало положительное решение этого вопроса. Через 40 лет А.С. Фаминцын обратился к проблеме роли симбиоза5 в эволюции и в серии статей (1907а, 19076, 1912а, 19126 и позднее) попытался представить симбиоз как важный формообразующий фактор, дополняющий работу дивергентного видообразования. Интересно, что теперь Фаминцын (1907) задался идеей показать, что принцип, породивший лишайники, можно распространить и на растительную клетку как структурную единицу. Чуть раньше с аналогичной гипотезой — независимо от Фа-минцына — выступил ботаник Казанского университета К.С. Мережковский (Mereschkovsky, 1905), брат поэта Д.С. Мережковского. Так родилось учение о симбиотическом происхождении клетки зеленых растений, которое после введения Мережковским в 1909 г. ныне общепринятого термина «симбиогенезис» {симбио-генез) стало называться учением о симбиогенезе. В переводе с греческого это слово означает «возникновение на основе совместной жизни». По мнению обоих авторов этой фантастической гипотезы, и ядро, и хлоропласты (хроматофоры) с заключенным в них хлорофиллом, и центросомы — короче, все известные тогда органел-лы растительной клетки — ведут свое происхождение от бактерий и водорослей, "которые проникли некогда в бесцветный амебопо-добный {или флагеллятоподобный) животный организм извне и стали его постоянными симбионтами. При этом особое значение для подтверждения гипотезы имели хлоропласты с их большой автономией и, как были убеждены авторы, непрерывностью этих пластид в ряду клеточных поколений; важным представлялось их сходство с современными свободноживущими одноклеточными водорослями. Фаминцын полагал, что хлоропласты ведут свое начало от таких форм, как хлореллы и ксантеллы. Мережковский вел их генеалогию от примитивных сине-зеленых (цианей). При этом оба категорически отвергали традиционные представления об их образовании всякий раз заново путем дифференциации клеточной плазмы. Надо сказать, что Мережковский шел в своих рассуждениях дальше Фаминцына. Он был убежден (Мережковский, 1909), что в основе всего живого лежат две глубоко различные плазмы — ми- 5 В 1879 г. немецкий миколог А. ле Бари назвал симбиозом разные формы сожительства или совместного объединения разнородных организмов.
коидная, из которой состоят бактерии, сине-зеленые водоросли и большая часть грибов, и амебоидная, которая слагает ткани животных и растений. Организмы, составленные из микоидной плазмы (Мережковский называл их микоидами), принадлежат к самому древнему царству на Земле. В результате симбиоза простейших безъя< ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|